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Abstract. A recipe is presented for obtaining Lax tensors for anyn-dimensional Hamiltonian
system admitting a Lax representation of dimensionn. Our approach is to use the Jacobi geometry
and coupling-constant metamorphosis to obtain a geometric Lax formulation. We also exploit the
results to construct integrable spacetimes, satisfying the weak energy condition.

1. Introduction

In this paper we extend the geometric formulation of the Lax pair equation given in [1, 2]. In [2]
a canonical transformation was used to formulate the three-particle non-periodic Toda system
as geodesic equations of a three-dimensional Riemannian space. However, the canonical
transformation which was used depends on the particular system and so the method has no
obvious extension to more general situations. A standard way to geometrize a system is to
reparametrize the time variable leading to the Jacobi geometry, see e.g. [3]. This approach has
the advantage that it always works for Hamiltonians of the typeH = T + V with a quadratic
kinetic energy. However, it was not understood how to transform the Lax representation
to the Jacobi time gauge. To remedy this situation we give a recipe for transforming
any Lax representation to the Jacobi time gauge by using the method of coupling-constant
metamorphosis [4]. It turns out that the resulting Lax system is again homogeneous of degree
one in the momenta. However, unlike the previous examples it has a nonlinear dependence on
the momenta with some terms being proportional to the square root of the Jacobi Hamiltonian.
As a result the original geometric formulation of the Lax pair equation [1] cannot be used
as it stands in this context. Instead, one is led to a slightly more general geometric Lax
representation.

The approach to geometric formulation of integrable systems presented in this paper has
both advantages and drawbacks. The advantages are that the dimension of the system is
unchanged, that the metric is just a conformal rescaling of the original kinetic metric (usually
flat space) and that the method works for any integrable system with quadratic kinetic energy
and with an arbitrary numbern, of particles. A requirement for the method to work is that the
corresponding Lax representation is of dimensionn. It is a drawback that the time must be
reparametrized and also that the geometric Lax formulation involves two dynamical tensors
instead of one as was the case in the original formulation. In any case, we consider this work
as a further step towards a more complete understanding of integrable geometries and their
associated Lax systems.
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We also apply our results to construct two types of integrable spacetimes satisfying the
weak energy condition in an open region.

2. Transforming Lax pair representations to Jacobi time

A common feature of completely integrable Hamiltonian systems is the existence of a Lax
pair, i.e. a pair of matrices(L,A) satisfying the equations of motion

dL

dt
= [L,A] (1)

where the time derivative is defined by

dL

dt
= {L, H }. (2)

It follows that Ik = k−1 TrLk, k = 1, 2, . . . , is a sequence of invariants of the system. We
considern-dimensional Hamiltonians of the classical type

H = T + V T = 1
2h

αβpαpβ V = V (q) (3)

wherehαβ is the kinetic metric. Furthermore, we restrict to Lax matrices of dimensionn that
are linear (but not necessarily homogeneous) in the momenta:

L = Lαpα +K

A = Aαpα +D.
(4)

Here, Lα, Aα, K andD are independent of the momenta. We seek a general recipe
for transforming such a Lax representation under the Jacobi time transformationt → tJ ,
dtJ = 2(E − V )dt , which maps orbits of an energy surfaceH = E into geodesics
of the Jacobi geometrygαβ = 2(E − V )hαβ , i.e. into orbits of the Jacobi Hamiltonian
HJ = 1

2g
αβpαpβ = [2(E − V )]−1T . This is naturally accomplished by performing the

time transformation as a coupling-constant metamorphosis [4]. To this end, we first of all
need to introduce a coupling constant into our original Hamiltonian. This is accomplished by
making the rescalingspα → λ−1pα andH → λ−2H , resulting in

H = T + λ2V (5)

whereT is defined by its original functional form. The transformation is noncanonical, yet
when accompanied by the time rescalingt → λt , the canonical equations of motion are
preserved. However, the same does not hold true for the Lax equation (1), but this is a
drawback which can be just as easily cured by making another rescaling, namelyA→ λ−1A.
Finally, we fix the gauge freedom to make arbitrary rescalings ofL by lettingL → λ−1L,
which gives the rescaled Lax pair

L = Lαpα + λK

A = Aαpα + λD.
(6)

The passage to the Jacobi timetJ , can now be obtained as a coupling-constant metamorphosis
acting on the coupling constantκ := 1

2λ
2 which has entered the Hamiltonian. However, to

end up with the homogeneous HamiltonianHJ when solving a fixed energy constraint forκ,
we need to hold on to the interpretation of the parameterE as the energy value of the original
HamiltonianH = T +V , thereby makingλ2E the corresponding energy value of the rescaled
HamiltonianH = T +λ2V . This, in fact, means that we are not really dealing with a coupling-
constant metamorphosis in the original sense, as the old energyE does not enter linearly into
the new HamiltonianHJ . Nevertheless, it is not difficult to realize that the results of [4] still



Lax pair tensors 3379

apply. It thus follows that when substitutingHJ for κ (i.e.
√

2HJ for λ) in the expressions for
H , L andA above, the original Lax equation (1) can be written as

dL

dtJ
= [2(E − V )]−1[L,A] (7)

where
dL

dtJ
= {L, HJ } (8)

and the factor [2(E − V )]−1 in front of the matrix commutator arises from the fact that
d/dt = 2(E−V ) d/dtJ . Absorbing this factor intoA, we obtain the final time transformed Lax
equation. To summarize, the original Lax pair system withH ,L andA given by equations (3)
and (4), is transformed to the Jacobi time gauge according to

HJ = [2(E − V )]−1T

LJ = Lαpα +
√

2HJK

AJ = [2(E − V )]−1
(
Aαpα +

√
2HJD

)
.

(9)

Note that all of these objects are homogeneous in the momenta although the two Lax matrices
are not polynomials. In the following we suppress the indexJ referring to the Jacobi time
and absorb the factor [2(E − V )]−1 into the definitions ofAα andD, thus focusing on the
geodesic Lax pair systems given by

H = 1
2g

αβpαpβ

L = Lαpα +
√

2HK

A = Aαpα +
√

2HD.

(10)

3. The Lax pair tensors

In [1], a geometrical formulation of the Lax equation was found by demanding that the tensors
corresponding to the Lax matrices should be linear and also homogeneous in the momenta.
We now generalize this geometrization by taking the system (10) as our starting point. This
leads us to write the components of the Lax matrices with mixed indices (i.e. row indices
contravariant and column indices covariant) so thatL = (Lαβ),A = (Aαβ),K = (Kα

β) and
D = (Kα

β). We then extract the geometrical objectsLαβγ , Aαβγ , from the components of
(10)

Lαβ = Lαβγ pγ +
√

2HKα
β

Aαβ = Aαβγ pγ +
√

2HDα
β.

(11)

Next, we define connection matrices byΓγ = (0αβγ )where0αβγ = gγ δ0αβδ and0αβγ is the
Levi-Civita connection associated to the Jacobi metric. In the following, the Jacobi metric is
used to raise and lower indices in this way on other objects as well. Judging from the original
Lax tensor formulation we expect thatLα, and thereby alsoK, will be tensors. Anticipating
this result we replace partial derivatives with covariant derivatives according to the recipes

Lα,β = Lα;β + [Lα,Γβ ] − 0αγ βLγ
K,α =K;α + [K,Γα].

(12)

This procedure is justified below. Using (4), the commutator [L,A] of the Lax equation can
be written in the form

([Lα,Aβ ] + [K,D]gαβ)pαpβ +
√

2Hpα([L
α,D] + [K,Aα]). (13)
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The Poisson bracket{L, H }, on the other hand, using (12), becomes

(Lα;β + [Lα,Γβ ])pαpβ +
√

2Hpα(K
;α + [K,Γα]). (14)

Identifying terms in (13) and (14) yields the following form of the Lax equations:

L(α;β) = [L(α,Bβ)] + [K,D]gαβ
K;α = [Lα,D] + [K,Bα]

(15)

where we have definedBα = Aα − Γα. This shows that we can consistently interpretL,B,
K andD as tensors since equations (15) are then manifestly covariant. However, note thatAα

is a connection-like object. By settingK = 0,D = 0, the second of equations (15) becomes
an identity while the first equation reduces to the Lax tensor equation of [1].

4. Examples

We now apply the above geometrized Lax formulation to some systems with known Lax
representations. They are all of the form (3) with flat kinetic metrichαβ = δαβ . For the
systems considered below, it is found that the matrixL∗ := Lαpα is diagonal, whileK has no
diagonal elements. It follows that TrK = 0 and Tr(L∗K) = 0. In addition,L∗ andK satisfy

TrL∗ =
∑
α

pα Tr(L2
∗) = 2T Tr(K2) = 2V (16)

so that the first two invariants of the geometrized system are

I1 = TrL =
∑
α

pα

I2 = 1
2 Tr(L2) = T + 2HV = ET

E − V = 2EH.
(17)

Also, the metric for these models is given by

gαβ = Tr(LαLβ)

2E − Tr(K2)
(18)

where Tr(LαLβ) = hαβ . The results obtained below for the different models have been verified
for the casen = 3, using the package GRTensorII [5] for MapleV.

4.1. The Toda lattice

First, we will consider then-particle non-periodic (open) Toda lattice, for which

V =
n−1∑
i=1

a2
i ai = exp(qi − qi+1). (19)

A standard Lax representation of this system is [6]

L = Lij =
n∑
k=1

pkδ
i
kδjk + ak(δ

i
kδj,k+1 + δik+1δjk)

A = Aij =
n∑
k=1

ak(δ
i
kδj,k+1− δik+1δjk).

(20)

From this Lax representation we find

Lα = Lij α = δiαδj α

K = Ki
j =

n∑
k=1

ak(δ
i
kδj,k+1 + δik+1δjk)

Aα = 0 Bα = −Γα D = 1

2(E − V )A.
(21)
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Note that the factor [2(E − V )]−1 is absorbed intoD, as discussed in section 2.
We note in passing that the results for a periodic Toda lattice can be obtained by letting

the sum in (19) run from 1 ton and by employing the cyclicity conditions

qn+1→ q1 δin+1→ δi1 δj,n+1→ δj1. (22)

4.2. The Calogero–Moser system

Our second example is the Calogero–Moser system (the type I system of [7]). The potential is

V =
∑
i<j

a2
ij aij = 1

qi − qj . (23)

A well known Lax representation of this system is [7]

L = Lij =
n∑
k=1

pkδ
i
kδjk + i(1− δij )aij

A = Aij = i

(
δij
∑
k 6=i

a2
ik − (1− δij )a2

ij

) (24)

from which it follows that

Lα = Lij α = δiαδj α
K = Ki

j = i(1− δij )aij
Aα = 0 Bα = −Γα D = 1

2(E − V )A.
(25)

5. Four-dimensional spacetime generalizations

In general relativity, symmetries of spacetime play an important role. Many examples of
spacetimes with linear invariants, corresponding to Killing vectors, are known [8]. However,
higher-order invariants (apart from the trivial quadratic invariantgαβpαpβ , associated with
the metric) are quite rare. A well known example is the second-rank Killing tensor of the
Kerr spacetime [9], which together with the two existing Killing vectors enable a complete
integration of the geodesics of that system. Examples of spacetimes with a nontrivial third rank
Killing tensor were given in [2], but apart from that, such Killing tensors are, to our knowledge,
unknown. In this perspective, it is of interest to extend the Riemannian geometries obtained
above (withn = 3) to four-dimensional spacetimes that inherit the symmetries of the original
geometry. The simplest generalization is obtained by introducing a time-like coordinateq0

according to
(4)ds2 = −(dq0)2 + ds2 (26)

where ds2 = 2(E − V )hαβ dqα dqβ , α, β ∈ {1, 2, 3}, andV is one of the potentials studied
above. Note that the conditionE > V must be satisfied for the metric to have a Lorentzian
signature. This is not a serious drawback, since the sign ofE − V is preserved along the
geodesics of the metric (26). Hence, a completely integrable (1 + 3)-dimensional geometry is
well defined in the regionE > V . In general, these spacetimes are of Petrov type II. Choosing
a particular potentialV , the Petrov type may be further specialized. The Toda and Calogero–
Moser potentials both lead to Petrov type II spacetimes. In a Lorentzian frame corresponding
to the given coordinates, the energy–momentum tensorT ab, a, b ∈ {0, 1, 2, 3}, for a spacetime
of this type satisfiesT 0α = 0 and can thus be diagonalized using a rotation of the spatial part
of the frame. Another characteristic feature is the fact that the eigenvalue equation for the
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spatial part ofT ab naturally factorizes into one linear and one second-degree equation. This
is due to the existence of the space-like Killing vector TrLα. The linear equation gives the
anisotropic pressure in the direction of this Killing vector. In terms ofT̃ ab = 2(E − V )3T ab,
the Lorentzian frame components of the energy–momentum tensor for the Toda spacetime
become

T̃ 00 = 8EV − 2
3∑
i=1

a2
i (a

2
i + 11a2

i+1)

T̃ αα = −2(V + a2
α+1)E + (V + 9a2

α+1)(V − a2
α+1)

T̃ α,α+1 = (−2E + 5V − 6a2
α)a

2
α − 3a2

α−1a
2
α+1

(27)

where it is to be understood that indices are added modulo three. These expressions hold
for the open case (a3 = 0) as well as for the closed case (a1a2a3 = 1). Diagonalizing the
energy–momentum tensor givesT̃ ab = diag(µ̃, p̃1, p̃2, p̃3), where

µ̃ = T̃ 00

p̃1 = −4EV + 12
3∑
i=1

a2
i a

2
i+1

p̃2,3 = 3±
√
32 −1

3 = −2EV +
3∑
i=1

a2
i (a

2
i + 5a2

i+1)

1 = 12(−13E + 9V )a2
1a

2
2a

2
3

+2
3∑
i=1

a2
i {6E2a2

i+1− E[4a4
i + 3a2

i+1(a
2
i + a2

i+1)] + 9a2
i+1(a

2
i − a2

i+1)
2}.

(28)

Since the eigenvalues ofT ab are related to those of̃T ab by a positive factor whenever the metric
signature conditionE > V holds, the weak energy condition [10] readsµ̃ > 0, µ̃ + p̃α > 0
which is equivalent tõµ > 0, µ̃ + p̃1 > 0, µ̃ +3 > 0,1 > 0. At the spatial originqα = 0,
whereV = 2 (V = 3) for the open (closed) case, these inequalities are satisfied ifE > 2
(E > 3). Hence by continuity, there must be some open region in(E, qα)-space where the
metric signature condition and the weak energy condition hold simultaneously.

CalculatingT ab for the Calogero–Moser spacetime yields the result

T̃ 00 = 3
3∑
i=1

4Ea4
i − (a3

i + a3
i+1)

2 − 4a2
i a

2
i+1(a

2
i + a2

i+1)

T̃ αα = −3E(a4
α−1 + a4

α + 2a4
α+1) + 3(a4

α−1 + a4
α)a

2
α+1 + 3(V − a2

α+1)(a
2
α−1a

2
α + 2a4

α+1)

−2a3
α−1a

3
α + 4(a3

α−1 + a3
α)a

3
α+1 + 2

3∑
i=1

a6
i

T̃ α,α+1 = −3a4
α(E − V + a2

α) + 3a3
α(a

3
α−1 + a3

α+1)− 3a3
α−1a

3
α+1

(29)

whereT̃ ab is defined as in the Toda case. As a Calogero–Moser system with three particles
can be viewed as a system with nearest-neighbour interaction, we have used the notation
ai = (qi − qi+1)−1, V = ∑3

i=1 a
2
i . The eigenvalues of̃T ab can be written down in a form

analogous to the Toda case. We choose not to do so here, however, as the expressions are more
complicated and not very illustrative. As for the Toda system, there is a region where the weak
energy condition is satisfied. This can be verified, e.g. by settingq1 = −1, q2 = 0, q3 = 1,
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which givesV = 9
4 and the following eigenvalues for̃T ab:

µ̃ = 99
4 (E − 545

264)

p̃1 = − 99
8 (E − 793

396)

p̃2,3 = − 99
16(E − 421

198)± 3
16|15E − 46|.

(30)

ForE > 9
4, these eigenvalues satisfy the weak energy condition.

6. Discussion

In this paper we have presented a general procedure for obtaining a tensorial Lax representation
from known Lax pair matrices. The tensorial representation is obtained via a time
reparametrization. It has two dynamical Lax tensors (L andK), instead of onlyL as
in the original geometric formulation [1]. One advantage with this particular geometrical
formulation is that it provides a straightforward recipe for obtaining Lax tensors from a known
Lax representation. Indeed, anyn-dimensional Hamiltonian system of the classical form (3)
that has a Lax representation of dimensionn can be geometrized in this way.
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